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Abstract-An expanded mode method constructed based on the modal analysis method and an
energy approach is presented for size identification of a crack with given location in a damaged
structure. Measured natural frequencies and mode shapes of the structure with or without a crack
are used to compute the strain energies of the structures subject to free vibration via a quasi-static
approach. The two types of strain energy are then combined with the work required for the crack
formation to construct the energy balance equation from which the size of the crack is evaluated
through an iteration procedure. The theory offracture mechanics is used to derive the work required
for crack formation. Examples of the identification of crack sizes for a number of damaged beam
structures are given to illustrate the applications of the proposed expanded mode method. Factors
affecting the accuracy of crack size identification are investigated using a cracked cantilever beam
as an example. The results show that the present method is promising for practical applications.

I. INTRODUCTION

Vibration investigation of damaged structures has been proved to be a feasible approach
for fault diagnosis. Utilizing the fact that a crack introduces a local flexibility which can
change the dynamic behavior of the structure, many researchers have proposed methods
for the identification of crack location and/or crack size from measured vibration fre­
quencies and mode shapes of cracked structures (e.g. Cawley and Adams, 1979; Anifantis
et aI., 1983; Inagaki et al., 1981 ; Rizos and Aspragathos, 1990; Shen, 1989; Chondros and
Dimarogonas, 1980). Recently, the authors (Kam and Lee, 1992; Lee and Kam, 1993) have
developed methods for crack detection using measured vibration data ofdamaged structures
via an energy approach. It was found that the proposed energy approach for crack detection
is promising to become an effective nondestructive evaluation method and hence deserves
further study.

In this paper, an expanded mode method evolved from the modal analysis method and
fracture mechanics principles is developed for size identification of a crack in damaged
structures using measured vibration data. In the present analysis, it is assumed that the
evaluation of crack location can be achieved by using the method proposed by Lee and
Kam (1993). Based on the previously proposed energy approach (Kam and Lee, 1992),
strain energies of a structure with or without a crack subject to free vibration and the work
for the crack formation are used to construct the energy balance equation from which the
crack size is determined via an iteration procedure. Herein the strain energies of the
uncracked and cracked structures induced by free vibration are evaluated by utilizing
measured frequencies and mode shapes of the structures via the proposed expanded mode
method. The work required for the crack formation is determined using an expression
derived from the theory of fracture mechanics. In the present method, except measured
frequencies and mode shapes of the structure with or without a crack and the basic material
properties of the structure, no other information (including the stiffness matrices of the
uncracked and cracked structures) is needed in the identification process. The feasibility
and applications of the proposed method are demonstrated by means of several examples
of the identification of sizes of cracks located at different positions in beams and frames.
Factors affecting the accuracy of crack size identification are investigated using a cracked
cantilever beam as an example.
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2. ENERGY BALANCE EQUATION

According to the Griffith balance of energy, a crack can form in an elastic body only
if such a process causes the total potential energy of the body to decrease. The total potential
energy, n, of a loaded body is defined as

n = V-F, (1)

where V is strain energy and F the work done by external forces. An incremental increase
in the crack area, dA, under equilibrium conditions can be expressed as (Anderson, 1991)

(2)

where We is the work required to create a new crack surface.
The energy balance equation for the case where the crack size grows from zero to a is

obtained by integrating both sides of eqn (2) :

-n(a)+n(O) = Wc(a)- We(O). (3)

Since no work is required for creating a crack with zero size, the above equation becomes

-n(a)+n(O) = We (a). (4)

Next consider the case in which the body is subjected to a dead load, as shown in Fig. lao
The work done by the applied load and the strain energy stored in the body are, respectively,

(5)

and

Substitution of the above two equations into eqn (l) yields

n= -0.

Therefore, the energy balance equation of eqn (4) can be written as

(6)

(7)

(a) (b)

o

U(O) Wc(a)

c
II (displacement)

H

Fig. I. Energies of an elastic body with or without a crack subject to dead load.
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U(a) - U(O) = Wc(a)

U(a) = U(O) +Wc(a).
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(8a)

(8b)

The above relation is demonstrated graphically in Fig. tb. The strain energy of the
body without a crack, U(O), is denoted by the area of the triangle b.OBP; the work done
for creating crack size a, Wc(a), is represented by the shaded area of b.OQB; the strain
energy of the body with a crack of crack size a, W(a), is the area of b.OHQ. Apparently
U(a) is the sum of U(O) and Wc(a).

3. EXPANDED MODE METHOD

Consider the free vibration of a damaged structure containing a crack of size a, which
has been modeled as an MDOF system. Ifthe mode shapes and the corresponding vibration
frequencies obtained from modal tests are, respectively, .,, and Ai = (rof), i = 1,2, ... , N,
the response of the MDOF system can be expressed as

v = cDY, (9)

where V is the Nx I displacement vector, cD is the Nx N mode shape matrix, which is a
collection of.jand Y is the N x t vector ofgeneralized coordinates. The mode shape matrix
has the following orthogonality properties:

(10)

and

(11)

where l is the diagonal matrix of square values of frequencies (rof), M is the mass matrix,
I is the identity matrix, K is the system stiffness matrix and the superscript T denotes the
transpose of a matrix. The strain energy, U(a), stored in the cracked structure during
vibration is obtained as

U(a) = 1V1){V. (12)

In view of eqns (9) and (10), the strain energy in eqn (12) can be expressed as the sum of
the modal strain energies of the system, i.e.

t N

U(a) = 1yTlY = 2' L YjA.jYj .
i= I

(13)

Consider a cracked structure vibrating at the shape of mode i. The response of mode i
subject to free vibration with nonzero initial velocity Yj(O) is (Clough and Penzien, 1975)

Yj(O) .
Y;(t) = --SlUrojt.

roj
(14)

In view of eqns (13) and (14), it can be shown that the maximum modal strain energy of
mode iis

A _1 '2Uj(a) - 2 Yj (0), (15)

where OJ(a) is the maximum modal strain energy ofmode i. Again, in view ofeqns (9) and
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(14), the maximum modal inertia force of mode i can be written as (Clough and Penzien,
1975)

(16)

where (V'j)max is the maximum acceleration. It is noted that the maximum modal strain
energy of eqn (15) is also equal to the strain energy of the structure loaded statically by the
inertia force of eqn (16).

Next, consider the evaluation of the strain energy of the same structure but without a
crack loaded statically by the inertia force of eqn (16). Assuming that the stiffness matrix
of the uncracked structure is unavailable, then the strain energy of the structure cannot be
determined directly from a finite element analysis. Herein a quasi-static expanded mode
method constructed based on simple vibration theory is introduced for evaluating the strain
energy of a free vibrating uncracked structure at the time when the inertia force of the
uncracked structure closely approximates that of eqn (16). In view of eqn (16), the inertia
force of the uncracked structure subject to free vibration at any instant is expressed as

(17)

where 1[, .y, cD, 1and Yare the nodal inertia force vector, nodal acceleration vector, mode
shape matrix, natural frequency matrix and the vector of generalized coordinates of the
uncracked structure, respectively; t denotes time. It is assumed that the existence of a crack
does not affect the mass of the structure. Hence, the mass matrices of the cracked and
uncracked structures are the same. Imagine that at some specific time, say t = 1, the inertia
force of the uncracked structure closely approximates the value of the inertia force in eqn
(16), i.e.

(18)

The above approximation equation implies that the synthesis of several modal inertia forces
of the uncracked structure may yield the approximate or hopefully the exact value of the
ith maximum modal inertia force of the cracked structure at some specific time. Therefore,
the solution ofeqn (18) gives the (approximate) deflection ofthe uncracked structure loaded
statically by the modal inertia force of eqn (16). The premultiplication of eqn (18) by cl»r
leads to

(19)

Observing the orthogonality condition of the mode shape matrix with respect to the mass
matrix, eqn (19) can be rewritten as

(20)

Premultiplying the above equation by the inverse of 1, 1-1, one gets an expression for
evaluating Y :

(21)

It is noted that the time l is a dummy in the above equation and the accuracy of Y(l) can
be improved by increasing the number of modes of the uncracked structure, i.e. the sizes
ofl and cl», in the above equation. In view of eqn (13), the approximate strain energy of
the uncracked structure, U(O), subject to the modal inertia force of the cracked structure
can then be written as
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U(O) = !~Tl~.

929

(22)

It is worth mentioning here that, although the above strain energy is derived from the
synthesis of several vibration modes of the uncracked structure, as will be shown by the
results obtained from the following numerical investigation, even the use of only one
vibration mode can yield a very good approximation of the exact strain energy of the
uncracked structure subject to the modal inertia force ofeqn (16). Assuming that the strain
energy of the uncracked structure obtained from eqn (22) is "exact" when loaded by the
modal inertia force of the cracked structure, the discrepancy between eqns (15) and (22) is
equal to the work required for crack formation, as described in the previous section. If no
crack exists in the structure, both eqns (IS) and (22) will yield the same result. It is also
worth noting that only the translation degrees of freedom are needed in constructing the
mode shape matrices of the cracked and uncracked structures in eqns (16) and (21), in
which the effects of rotational degrees of freedom can be included via the use of the static
condensation method.

4. DETERMINATION OF CRACK SIZE

The work required for crack formation, We' has been studied extensively in fracture
mechanics and expressions for evaluating the work for different problems are available in
the literature (Broek, 1974). Consider a crack in a beam-type structure; the work for crack
formation is expressed as (Tada et al., 1973)

We = bf: [(Kl+Kll)/E'+(1+v)K~dE]da, (23)

where a is crack length, b is width of beam section, E' = E for plane stress, E' = E/(1 - v2
)

for plane strain, E is the elastic modulus, v is the Poisson ratio, and K.. Kn and Kill are
stress intensity factors for opening type, sliding type and tearing type cracks, respectively.
Now consider the work required for creating a crack of size a in a beam structure subject
to the ith maximum modal inertia force. With the action of axial force neglected, eqn (23)
becomes

(24)

where

(25)

(26)

(27)

(28)
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with s =alh; band h are the width and depth of beam cross-section, respectively, I is the
distance between the crack and the right end of the cracked member, and M and P are the
moment and shear force, respectively, at the right end ofthe cracked member. As mentioned
before, the maximum modal strain energy of the cracked beam structure can be expressed
as the sum of the strain energy of the uncracked beam structure subject to the maximum
modal inertia force of the cracked beam structure and the work required for the crack
formation. In view of eqns (15), (22) and (24), the energy balance equation for the beam
structure can be established as

(30)

In the above equation, both Ol(a) and U(O) can be evaluated immediately once the mode
shapes and vibration frequencies of the cracked and uncracked beam structures have been
measured by experiment and the value of YI(O) in eqn (15) is chosen. The magnitude of the
crack can then be determined from eqn (30) using a Newton-Raphson type iteration scheme.
The value of t(O) can be chosen arbitrarily and it has no effect on the identified crack size.

5. SENSITIVITY ANALYSIS

The existence ofnoise in measured vibration data is inevitable. Therefore, the measured
vibration frequencies and mode shapes may deviate from the true values of the uncracked
as well as the cracked structures. An approximate analysis in the field of probability
(Benjamin and Cornell, 1970) is used to investigate how the variations in vibration fre­
quencies and mode shapes affect the accuracy of the identified crack size. Herein, vibration
frequencies, mode shapes and crack size are treated as random variables. Let (X, CTx) be the
expected value and standard deviation pair of random variable X. In view of eqn (30), we
define the function G(X) as

G(X) = Oi(a) - U(O) - Wc(a) = 0, (31)

where X = {Wi> cPi]"'" cPim,Wb'" ,wp, iPt], ... ,iPpq, a}. We expand G(X) at the mean values
of an random variables in a truncated Taylor series:

+t t «(Plk-$/k) :f I+(a-ii) ~GI, (32)
1= I k= I v'/'Ik 1 va 1

where p is number offrequencies, m and q are numbers ofdegrees of freedom, and X stands
for the expected values of all random variables.

The first-order approximation to the expected value of G is

E[G] ~ G(l) = Oi(ii)-U(O)- Wc(ii) O.

The first-order approximation to the variance of Gis

(33)
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(34)

where Var[X] = u;, the variance of X.
The expected value of crack size a is evaluated from eqn (33) following the iteration

procedure described in the previous section. The variance ofcrack size can be easily obtained
from eqn (34), i.e.

_ 1 {( 8G I )2 m (8G I )2
Var [a] = ( 1)2 a. Var [wd +L 8A, ..8G WI x J= I 'l'IJ X

8a X

p (8G I )2 p q (8G I )2 -}x Var [cPij] + L ~ Var [WI] + L L ~;: Var [cPlk] .
1= I uWI X 1= I k= I U'l'lk X

(35)

6. EXAMPLES

The aforementioned method for crack size evaluation will be applied to the deter­
mination of the magnitudes of cracks on several beam structures. First, consider a 300
mm cracked cantilever beam of cross-section 20 x 20 mm 2

, with modulus of elasticity
E = 2.06 X 105 MPa, Poisson's ratio v = 0.3 and mass density p = 7750 kgjm3 (Fig. 2a).
Herein the measured vibration frequencies and mode shapes of the beam containing an
edge crack of various sizes at different positions along the beam were obtained by using a
finite element analysis of the cracked beam (see Fig. 2b). The cracked element developed
by Qian et al. (1990), which has been validated by experimental data, was used in the above
finite element analysis. Some typical natural frequencies of the first three modes of the
cracked beam containing a crack of various sizes and locations are given in Table 1. Once
the vibration characteristics of the uncracked and cracked beams are known, the sizes of
the crack with given locations can be estimated using any set of eigencouples (frequency
and mode shape) of the first three modes of the cracked beam. In the identification process,
however, the number of vibration modes used in evaluating the strain energy of the
uncracked beam of eqn (22) may affect the accuracy of the strain energy, depending on

y

t
~.

x

-, ,
a

T

L=300

I"

- X

-I
(a) Cracked cantilever beam (mm)

(b) Finite element model (mm)

Fig. 2. Cracked cantilever beam and its finite element model for crack detection.
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Table 1. Natural frequencies ofcracked cantilever beams

Crack (mm) Natural frequency (Hz)

Position Depth 1st 2nd 3rd

30 2 183.09 1155.85 3256.39
6 167.24 1122.64 3235.00

10 136.53 1072.96 3202.93
14 93.39 1026.86 3169.97

90 2 184.14 1158.99 3243.39
6 176.02 1146.47 3120.12

10 156.78 11l9.47 2904.84
14 120.08 1078.18 2666.37

150 2 184.77 1152.49 3259.41
6 181.91 1087.76 3258.83

10 173.93 956.79 3256.18
14 152.58 771.14 3249.13

210 2 185.04 1155.97 3236.75
6 184.54 1116.07 3061.41

10 183.07 1014.00 2753.37
14 178.18 802.39 2421.45

270 2 185.09 1160.29 3256.36
6 185.08 1158.29 3227.39

10 185.04 1152.18 3138.28
14 184.92 1130.86 2844.58

No crack 185.20 1160.60 3259.10

which mode of the cracked beam is chosen. To demonstrate the accuracy of the present
method, different synthesis methods were adopted in the following illustration. Only the
eigencouple of the first mode of the uncracked beam would be used if the eigencouple of
the first mode of the cracked beam was chosen for identification; if the second mode of the
cracked beam was adopted, the first two modes of the uncracked beam would be used; the
first three modes of the uncracked beam would be used if the third mode of the cracked
beam was chosen (this policy was also adopted for the other structures considered in
the other examples). The maximum modal strain energies of the cracked beam and the
corresponding strain energies of the uncracked beam for different cases were first computed
by using, respectively, eqns (15) and (22), and the values are listed in Table 2. Based on
eqn (30), the sizes of the crack at different locations were determined via a Newton­
Raphson type iteration scheme. The identified crack sizes and the corresponding errors in
estimation are given in Table 3. Figures 3-5 illustrate the discrepancies between the actual
and identified crack sizes. The results show that the overall performance of the present
method is excellent for the cases considered, except for cracks of small sizes located at any
node of the chosen vibrating mode of the cracked beams. For instance, a crack of any size
located at ISO mm can be identified accurately using either the first or the second modes;
for the same crack, even though it is located at the first node (x = ISO mm) of the third
mode, the use of the third mode of the cracked beam can still yield good results for crack
sizes larger than 2 mm (see Table 3). It is also worth noting that, since there is no node in
the first vibration mode of the cantilever beam, the use of the first modes of both the cracked
and uncracked beams in the identification process can yield excellent results. In the above
identification process, several factors may have some adverse affects on the accuracy of the
identified crack size. One of these factors is number of elements. The effect of number of
elements on the accuracy of the identified crack size was first studied. The identified crack
sizes for the cracked beam discretized into, respectively, two, three and four elements are
listed in Table 4 in comparison with the exact crack sizes. It is noted that the effects of
number of elements are minimal and this reaffirms the effectiveness of the present identi­
fication method. The next factor to be considered is the uncertainties existing in measure­
ment. Variations in measured eigencouples are inevitable and their effects on the accuracy
of identified crack size must be investigated. The aforementioned approximate analysis [see
eqns (33) and (35)] was used to study the variations in identified crack size induced by those
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Table 2. Strain energies ofcantilever beams with and without a crackt

Crack
1st mode 2nd mode 3rd mode

Position Depth
(mm) (mm) O,(a) U(O) O,(a) U(O) 0 3(a) U(O)

30 2 1404.830 1374.580 857.359 850.638 487.026 486.129
6 1373.330 1120.89O 879.447 833.453 495.778 49O.112

10 1320.260 716.880 918.821 846.503 507.980 499.383
14 1263.960 320.040 962.474 908.260 517.886 509.258

90 2 1410.100 1395.650 850.490 848.291 486.798 482.058
6 1419.050 1283.270 817.036 799.016 497.195 460.140

10 1437.730 1030.780 745.247 706.528 527.948 454.373
14 1464.920 614.533 637.360 596.979 586.829 515.453

150 2 1411.350 1406.490 850.516 838.847 485.336 485.344
6 1432.050 1383.014 816.405 720.464 482.163 481.975

10 1486.950 1311.020 735.514 527.235 475.858 474.947
14 1614.530 1084.950 574.803 359.331 467.389 464.586

210 2 1410.080 1409.270 859.888 853.170 482.457 475.799
6 1419.890 1411.500 904.302 835.304 449.260 400.475

10 1449.050 1417.270 994.129 751.861 356.589 281.918
14 1543.590 1427.000 1066.680 518.981 207.087 170.006

270 2 1409.070 1409.050 855.270 854.950 487.215 486.277
6 1409.570 1409.360 862.106 858.798 500.137 490.067

10 1411.080 1410.320 882.844 869.941 534.535 492.013
14 1416.230 1413.550 953.121 901.495 588.744 423.575

t U,(a): strain energy of cracked structure vibrating at mode i; Uo(O): strain energy of
uncracked structure. The units of strain energy are kg_m2/s2•

in measured eigencouples. Figure 6 shows the coefficient of variation (cov) of a crack
with different sizes in element I subject to various degrees of uncertainties in measured
eigencouples. It is noted that the variation in crack size can be less than 5% if the variations
in measured frequencies and mode shapes are either less than 5% or the size of the crack
is relatively large (>6 mm for the cases considered). From actual tests for crack size

Table 3. Actual and identified crack sizes ofcantilever beams

Actual (target) Identified crack size
crack 1st mode 2nd mode 3rd mode

Position Depth Depth Error Depth Error Depth Error
(mm) (mm) (mm) % (mm) % (mm) %

30 2 2.0097 0.4850 2.0123 0.6150 2.0367 1.8350
6 6.0027 0.0450 6.0044 0.0733 6.0128 0.2133

10 10.0011 0.0110 10.0355 0.3550 10.0108 0.1080
14 14.0004 0.0029 14.0153 0.1093 14.0139 0.0993

90 2 2.0100 0.5000 2.0142 0.7100 2.0100 0.5000
6 6.0030 0.0500 6.0091 0.1517 6.0103 0.1717

10 10.0010 0.0100 10.0242 0.2420 10.0265 0.2650
14 14.0003 0.0021 14.0557 0.3979 14.0494 0.3529

150 2 2.0100 0.5000 2.0098 0.4900 2.8815 44.0750
6 6.0065 0.1083 6.0054 0.0900 6.1382 2.3033

10 10.0018 0.0180 10.0015 0.0150 10.0531 0.5310
14 14.0017 0.0121 14.0023 0.0164 14.0338 0.2414

210 2 2.0000 0.0000 2.0105 0.5250 2.0102 0.5100
6 6.0030 0.0500 6.0093 0.1550 6.0113 0.1883

10 10.0021 0.0210 10.0216 0.2160 10.0270 0.2700
14 14.0019 0.0136 14.0222 0.1586 14.0399 0.2850

270 2 2.0140 0.7000 2.0156 0.7800 2.0156 0.7800
6 6.0800 1.3333 6.0047 0.0783 6.0192 0.3200

10 9.9900 0.1000 10.0072 0.0720 10.0638 0.6380
14 14.0030 0.0214 14.0673 0.4807 14.11l9 0.7993
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Fig. 3. Crack size identification of a cantilever beam using the first mode (mm).
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Fig. 4. Crack size identification of a cantilever beam using the second mode (mm).
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Fig. 5. Crack size identification of a cantilever beam using the third mode (mm).
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Table 4. Actual and identified crack sizes using different finite
element models of cantilever beams

Finite element Actual (target) Identified
model crack crack size

No. of Position Depth Depth Error
elements (mm) (mm) (mm) %

2 75.0 2 2.0263 1.3150
6 6.0068 0.1133

10 10.0040 0.0400
14 13.9780 0.1571

225.0 2 2.0400 2.0000
6 6.0108 0.1800

10 10.0040 0.0400
14 14.0020 0.0143

3 50.0 2 2.0167 0.8350
6 6.0044 0.0733

10 10.0016 0.0160
14 14.0004 0.0029

250.0 2 2.0285 1.4250
6 6.0074 0.1233

10 10.0028 0.0280
14 14.0011 0.0079

4 187.5 2 2.0030 0.1500
6 6.0036 0.0600

10 10.0021 0.0210
14 14.0001 0.0007

262.5 2 2.0264 1.3200
6 6.0071 0.1183

10 10.0024 0.0240
14 14.0006 0.0043

identification (Lee, 1992), it was found that uncertainties in measurement can be greatly
reduced if the tests are performed carefully.

The last factor to be considered is location of the crack in the cracked element. It is
noted that a crack is likely to develop near the critical part of the beam. Herein a crack at
various positions in element 2 is used as an example to illustrate the effects ofcrack location
on the accuracy of identified crack size. Figure 7 shows the errors of identified crack sizes
for a crack of different sizes at various positions in element 2. It is noted that the error
increases as the crack approaches either one of the boundaries of the cracked element. The

II.> 0.2
.!::l
fIl

.!ll
Co>
III...
Co>...
0

....
I::
II.>.c:;
5

II.>

8 0

e a=6mm 0 a=6mm
+ a=10mm 0 a=10mm

x a=14mm

(coV(c.l)=O.005)

o 0.02 0.04 0.06 0.08 0.1 0.12

Coefficient of variation of mode shape
(cov(p»

Fig. 6. Variation of crack size induced by variations of measured eigencouple.
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Fig. 7. Errors of identified crack sizes for cracks located at various positions in the second element.

increase in the number of elements or remeshing elements with different sizes for the
evaluation of strain energies may help to improve the accuracy of identified crack size. It
is therefore advised that different finite element meshes be used in the identification process
to check the convergence of the identified crack size. It is also worth mentioning here that
although the identification of crack location has not been discussed in this paper, the
approximate location ofa crack in a structure can be easily determined by the identification
of the cracked element (Lee and Kam, 1993).

The identification ofcracks of various sizes located at different positions along a free­
free beam was performed. The material properties and dimensions of the fixed end beam
were adopted for this example. The natural frequencies of the first three modes of the beam
containing cracks of various sizes and located at different positions are given in Table 5.
Using the present method, the sizes of the cracks located at different positions were ident­
ified. The maximum modal strain energies of the cracked beam and the corresponding

Table 5. Natural frequencies of cracked free-free beam

Crack (mm) Natural frequency (Hz)

Position Depth 1st 2nd 3rd

30 2 1178.10 3253.77 6411.65
6 1175.97 3224.94 6282.52

10 1169.45 3136.30 5924.96
14 1146.68 2844.24 5165.55

90 2 1173.30 3234.44 6413.86
6 1128.98 3061.72 6328.67

10 1015.39 2759.87 6201.36
14 778.55 2438.29 6080.38

150 2 1168.08 3256.83 6395.72
6 1084.58 3256.38 6173.54

10 910.79 3253.92 5819.16
14 642.64 3246.86 5468.32

210 2 1173.30 3234.44 6413.86
6 1128.98 3061.72 6328.67

10 1015.39 2759.87 6201.36
14 778.55 2438.29 6080.38

270 2 1178.10 3253.77 6411.65
6 1175.97 3224.94 6282.52

10 1169.45 3136.30 5924.96
14 1146.68 2844.24 5165.55

No crack 1178.33 3256.88 6425.88



Crack size identification 937

Table 6. Strain energy of free-free beams with and without a crackt

Crack
1st mode 2nd mode 3rd mode

Position Depth
(mm) (mm) O,(a) U(O) 02(a) U(O) 03(a) U(O)

30 2 873.515 873.172 483.681 482.754 232.309 231.276
6 870.592 867.085 478.968 469.368 232.194 221.562

10 861.522 848.287 463.980 427.243 235.144 197.871
14 828.485 78J.l26 418.662 301.860 274.394 195.813

90 2 868.937 861.514 486.668 480.038 234.838 233.982
6 826.413 757.120 511.649 457.004 252.997 246.991

10 724.687 528.219 586.340 466.827 280.563 270.753
14 558.370 225.118 727.348 602.922 305.402 296.887

150 2 871.825 856.712 484.176 484.160 234.093 231.936
6 855.938 724.792 484.124 483.976 248.097 231.847

10 825.797 491.692 483.837 482.959 275.240 245.538
14 788.499 232.165 483.008 480.034 309.605 284.221

210 2 880.402 872.880 480.747 474.198 227.466 226.637
6 935.264 857.303 446.543 398.851 193.310 188.721

10 1056.550 770.114 352.274 280.470 145.954 140.851
14 1222.880 493.017 203.704 168.856 108.135 105.120

270 2 874.641 874.298 485.613 484.683 232.399 231.366
6 882.102 878.548 498.404 488.414 230.973 220.396

10 904.762 890.863 532.389 490.236 209.857 176.592
14 981.857 925.730 585.052 421.829 101.505 72.436

t Uj(a): strain energy of cracked structure vibrating at mode i; Uo(O): strain energy of
uncracked structure. The units of strain energy are kg - m2/s2

•

strain energies of the uncracked beam for different cases are listed in Table 6. The identified
crack sizes and the errors in estimation are given in Table 7. Again, the errors are very
small. Experimental investigation ofcracked free-free beams was also performed to validate
the present method (Lee, 1992). The results obtained experimentally are encouraging and
the errors are less than 10%.

Table 7. Actual and identified crack sizes offree-free beam

Actual (target) Identified crack size
crack 1st mode 2nd mode 3rd mode

Position Depth Depth Error Depth Error Depth Error
(mm) (mm) (mm) % (mm) % (mm) %

30 2 2.0168 0.8400 2.0158 0.7900 2.0170 0.8500
6 6.0054 0.0900 6.0188 0.3133 6.0550 0.9167

10 10.0075 0.0750 10.0640 0.6400 10.1737 1.7370
14 14.0166 0.1186 14.1123 0.8021 14.2109 1.5064

90 2 2.0105 0.5250 2.0102 0.5100 2.0193 0.9650
6 6.0096 0.1600 6.0116 0.1933 6.0145 0.2417

10 10.0216 0.2160 10.0263 0.2630 10.0354 0.3540
14 14.0194 0.1386 14.0417 0.2979 14.0655 0.4679

150 2 2.0097 0.4850 3.4003 70.0150 2.0103 0.5150
6 6.0028 0.0467 6.1625 2.7083 6.0038 0.0633

10 10.0014 0.0140 10.0419 0.4190 10.0145 0.1450
14 14.0006 0.0043 14.0175 0.1250 14.0305 0.2179

210 2 2.0106 0.5300 2.0102 0.5100 2.0188 0.9400
6 6.0096 0.1600 6.0115 0.1917 6.0144 0.2400

10 10.0215 0.2150 10.0264 0.2640 10.0348 0.3480
14 14.0194 0.1386 14.0418 0.2986 14.0653 0.4664

270 2 2.0200 1.0000 2.0111 0.5550 2.0160 0.8000
6 6.0058 0.0967 6.0191 0.3183 6.0551 0.9183

10 10.0074 0.0740 10.0639 0.6390 10.1 738 1.7380
14 14.0166 0.1 186 14.1124 0.8029 14.2371 1.6936
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Fig. 8. Cracked plane frame and its finite element model for crack identification.

Finally, the present method was applied to crack size identification of the cracked
frame in Fig. 8. The frame was composed of three beam members of cross-sectional
dimensions, area = 14.0E-4 m2

, moment of inertia = 5.0E-6 m4 and Young's modu­
lus = 2.06E+ 11 kgfjm2

• The frame was discretized into four elements in the finite element
model used for evaluating the frequencies and the mode shapes of the cracked frame. The
crack was assumed to be located at the center of the cracked element of the frame. The
frequencies of the frame containing cracks ofdifferent crack depth ratios (the ratio ofcrack
size to the depth of member cross-section) are given in Table 8. The maximum modal strain
energies of the cracked frame and the corresponding strain energies of the uncracked frame
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Table 9. Strain energy of plane frame structures with and without a crackt

Crack
1st mode 2nd mode 3rd mode

Element Depth
no. (mm) Olea) U(O) 02(a) U(O) 03(a) U(O)

41.4 2942.02 2936.66 2416.00 2414.29 85.556 84.635
82.8 2946.19 2919.95 2403.51 2395.25 100.827 95.731

124.2 2958.15 2870.96 2367.05 2340.56 144.758 123.320

2 41.4 2951.77 2908.42 2410.21 2403.25 81.590 81.548
82.8 2991.12 2786.46 2377.45 2347.78 81.401 81.222

124.2 3085.18 2471.04 2298.61 2230.14 80.995 80.565

3 41.4 2930.13 2899.52 2430.96 2421.38 79.167 78.755
82.8 2889.89 2746.87 2474.68 2431.16 70.693 69.081

124.2 2787.55 2369.13 2585.47 2467.92 53.550 50.535

t [rla): strain energy of cracked structure vibrating at mode i; Uo(O): strain energy of
uncracked structure. The units of strain energy are kg - m2/S2.

for different cases are listed in Table 9. The identified crack sizes and the errors in estimation
are given in Table 10. Again, the results show that the present method can yield very
good results, even when only one vibration mode of the uncracked frame is used in the
identification process.

7. CONCLUSIONS

A method for identifying the sizes of cracks on beam-type structures is presented.
Concepts of modal analysis and fracture mechanics are used to construct an energy balance
equation from which the size of the crack is evaluated via an iteration scheme. A few
measured eigencouples of cracked and uncracked structures are required to compute the
strain energies in constructing the energy balance equation. The present method is simple
and easy to use and requires no information on the stiffness matrix of the structures. The
use of the eigencouple ofonly one vibration mode ofboth cracked and uncracked structures
can yield very good results so long as the crack is not located at the nodes of the mode.
Examples of the identification of crack sizes for a fixed cantilever beam, a free-free beam
and a plane frame are given to illustrate the applications and the accuracy of the present
method. Factors that may affect the accuracy of identified crack size are also studied.
Although the ideas and formulation presented in this paper are useful and valuable, the
present method should be extended to the crack size identification of more complex struc­
tures before it can become a practical tool for nondestructive evaluation of damaged
structures.

Table 10. Actual and identified crack sizes of plane frame structure

Actual (target) Identified crack size
crack 1st mode 2nd mode 3rd mode

Element Depth Depth Depth Error Depth Error Depth Error
no. ratio (mm) (mm) % (mm) % (mm) %

0.2 41.4 41.4007 0.0017 41.5114 0.2691 41.4068 0.0164
0.4 82.8 82.7927 0.0088 82.8077 0.0093 82.8546 0.0659
0.6 124.2 124.2033 0.0027 124.4580 0.2077 124.3279 0.1030

2 0.2 41.4 41.4018 0.0043 41.3917 0.0200 41.3774 0.0546
0.4 82.8 83.0281 0.2755 82.8043 0.0052 82.8214 0.0258
0.6 124.2 124.2052 0.0042 124.2030 0.0024 124.3281 0.1031

3 0.2 41.4 41.4038 0.0092 41.3934 0.0159 41.4143 0.0345
0.4 82.8 82.8018 0.0022 82.7794 0.0249 82.8936 0.1130
0.6 124.2 124.2084 0.0068 124.2155 0.0125 124.4966 0.2388
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